
 1. Dawkins' Algorithm

In order to demonstrate the effects of a proper implementation of natural
selection on the results of evolutionist algorithms, it would be pertinent to first
duplicate the results of one of the better known and most widely cited algorithms
to have been put forward by evolutionists so far. This algorithm is Richard
Dawkins' famous “Weasel” algorithm, described in Chapter 3 of his book, “The
Blind Watchmaker”:

We again use our computer monkey, but with a crucial difference in its
program. It again begins by choosing a random sequence of 28 letters,
just as before ... it duplicates it repeatedly, but with a certain chance of
random error – 'mutation' – in the copying. The computer examines the
mutant nonsense phrases, the 'progeny' of the original phrase, and
chooses the one which, however slightly, most resembles the target
phrase, METHINKS IT IS LIKE A WEASEL. 1

Dawkins uses a single point mutation per generation for each offspring derived
from the original. There are 100 offspring per generation, and the final result is
obtained in under 50 generations (generally). It is clear from the above quotation
that the mutant with the highest fitness value will always be selected for in this
algorithm.

A fairly simple and relatively quick version of this algorithm is listed below, along
with its output. A more realistic version of this algorithm that uses more realistic
calculations in its implementation of natural selection will be presented in the
next section.

Source Code Listing (VB6):

Option Explicit

Public Const TARGET_STRING As String = "METHINKS@IT@IS@LIKE@A@WEASEL"
Public Const OFFSPRING_PER_GENERATION = 100

Private mlngTarget() As Long
Private mlngParent() As Long
Private mlngLength As Long
Private mlngGeneration As Long

Public Sub Main()

 Dim lngDisplay As Long

 Randomize Timer

 Call StringToLong(TARGET_STRING, mlngTarget)

1 Dawkins, R. (1986) The Blind Watchmaker, Oxford University Press.

 Call GenerateInitial

 lngDisplay = 1
 Do While CalculateScore(mlngParent) > 0
 If mlngGeneration = lngDisplay Then
 Call ShowResult
 lngDisplay = lngDisplay * 10
 End If

 Call GenerateOffspring
 Loop

 If mlngGeneration * 10 <> lngDisplay Then
 ShowResult
 End If

End Sub

Private Sub GenerateInitial()

 Dim lngIndex As Long

 mlngLength = Len(TARGET_STRING)
 ReDim mlngParent(1 To mlngLength)
 mlngGeneration = 1
 For lngIndex = 1 To mlngLength
 mlngParent(lngIndex) = Int(Rnd * 27)
 Next lngIndex

End Sub

Public Sub StringToLong(ByRef StringIn As String, ByRef LongOut() As
Long)

 Dim lngIndex As Long

 ReDim LongOut(1 To Len(StringIn))
 For lngIndex = 1 To Len(StringIn)
 LongOut(lngIndex) = AscW(Mid$(StringIn, lngIndex, 1)) - 64
 Next lngIndex

End Sub

Public Function LongToString(ByRef LongIn() As Long) As String

 Dim lngIndex As Long

 LongToString = vbNullString
 For lngIndex = LBound(LongIn) To UBound(LongIn)
 LongToString = LongToString & Chr$(LongIn(lngIndex) + 64)
 Next lngIndex

End Function

Private Sub GenerateOffspring()

 Dim lngIndex As Long
 Dim lngBest() As Long
 Dim lngNext() As Long

 lngBest = mlngParent
 Call Mutate(lngBest(Int(Rnd * mlngLength) + 1))

 For lngIndex = 2 To OFFSPRING_PER_GENERATION
 lngNext = mlngParent
 Call Mutate(lngNext(Int(Rnd * mlngLength) + 1))

 If CalculateScore(lngNext) < CalculateScore(lngBest) Then
 lngBest = lngNext
 End If
 Next lngIndex

 mlngParent = lngBest
 mlngGeneration = mlngGeneration + 1

End Sub

Private Sub Mutate(ByRef FromVal As Long)

 FromVal = (FromVal + Int(Rnd * 26) + 1) Mod 27

End Sub

Private Function CalculateScore(ByRef CompareTo() As Long) As Long

 Dim lngIndex As Long

 For lngIndex = 1 To mlngLength
 If mlngTarget(lngIndex) <> CompareTo(lngIndex) Then
 CalculateScore = CalculateScore + 1
 End If
 Next lngIndex

End Function

Private Sub ShowResult()

 Debug.Print "Generation " & mlngGeneration & ": " & _
 Replace$(LongToString(mlngParent), "@", " ") & _
 " [" & CalculateScore(mlngParent) & "]"

End Sub

Program Output:

Generation 1: XFLOOOWJIW X KEFZBWO XXGVBUP [28]
Generation 10: XELHWOWJII S FIBWO XWGVBUP [20]
Generation 45: METHINKS IT IS LIKE A WEASEL [0]

	 1. Dawkins' Algorithm

