
Part 1: Populations and Probabilities

Given an initial genome population:

G={ng≥ x≥1∣g1 , g 2 , g3 , ... , g x ,... , gn g−1 , gn g}

Where g x  is the x th  genome in the population G, and ng  is the number of 
genomes present in the population.

We define:

M={nm≥ x≥1∣m1 ,m2 ,... ,mx ,... ,mnm−1 ,mnm}

Where  m x  is the  x th  genome in the population of mutated offspring M of 
parents G, and nm  is the number of offspring produced by G and included in M.

We further define ne  as the number of individuals expected to survive from M 
and  produce  further  offspring,  and  P s mx   as  the  chance  of  survival  of 
individual m x  undergoing the selective pressure that will reduce the population 
M from nm  to ne .

The sum total of all the probabilities for M will thus equal ne , or:

∑ P sM =ne

And the average chance of survival, (or the chance of survival for an individual 
with an average genome,) will thus be:

P s mavg=
∑ P sM 

nm
=
ne
nm

P s mavg=
ne
nm



Part 2: Definition of Fitness

The fitness of an individual F m x is then defined such that:

F ma
F mb

=
P sma
P s mb

In this case, an individual's fitness will have a direct relation to its chance of 
survival relative to the other individuals in its population.

If, then, we define:

F ma≡mP sma

we obtain the following:

F ma
F mb

=
m P s ma
mP smb

which is equivalent to our original definition, for m , a positive scalar.

Here m  is arbitrary in relation to the individual's probability, but not when 
individuals are compared against each other; the scalar m  must be consistent 
throughout the population, but need not be consistent across generations.

Since:

P s mavg=
ne
nm

then:

m P s mavg=m
ne
nm

F mavg=m
ne
nm

m=F mavg
nm
ne

And since:



F mavg=
∑ F M 
nm

then:

m=
∑ F M 
nm

nm
ne

m=
∑ F M 

ne

So the scalar m  is dependent on the total fitness and the expected number of 
survivors  alone.  Moreover,  we  can  now  determine  an  individual's  chance  of 
success using the following:

F m x=mP sm x

P s mx =
F mx 
m

P s mx =
F m x

∑ F M 
ne

An individual's survival, then, is not so much dependent on the total number of 
individuals to choose from as the total fitness of those individuals. (Of course, 
more individuals means more total fitness, so the values are still related.) The 
number of expected survivors, then, acts as an indicator of selective pressure – 
the lower ne  is set to, the higher the selective pressure must be to bring about 
this change.

An individual's chance of success can also be determined as follows:

F m x=mP sm x

F m x=F mavg
nm
ne
P sm x

P s mx =
F m x
F mavg

ne
nm

Which  is  an  individual's  fitness  compared  to  the  average  fitness,  times  the 
average survival rate. This is, perhaps, the more intuitive of the two formulas.



Part 3: Limits to m  and ne

The limiting factor to ne , and, consequently m is the probability of survival 
of an individual with the maximum fitness value in the population ( P s mmax ). 

Since no probability of survival can be above 1.0 (100%), we have:

F mmax=m P smmax

F mmax
m

=P smmax≤1

F mmax
m

≤1

m≥F mmax

And hence,

F mmax≤m=
∑ F M 

ne

F mmax≤
∑ F M 

ne

ne≤
∑ F M 
F mmax

or,

ne≤nm
F mavg
F mmax

A fitness scalar must therefore be at least as large as the maximum fitness value 
that is present in the population. Likewise, the number of expected survivors 
cannot exceed the total fitness divided by the maximum fitness value included in 
its population.



Part 4: Evolutionary Advancement

For evolutionary advancement to occur, the average fitness of the population 
must increase from generation to generation:

F m' avgF gavg 
Evolutionary Advancement

Where m ' avg  is an average surviving child, and gavg  is an average parent.

This can also be defined as follows:

∑ F M ' 
nm'


∑ F G
ng

Evolutionary Advancement

Where  nm' is the number of children that survive to reproduce and M' is the 
actual child population.

There are four main ways that this increase in the average fitness can be brought 
about. These include:

1. Positive mutations can occur.
2. Better fit  parents can produce multiple children and these children can 

out-survive their neighbors.
3. The size of the population can change.
4. Environmental conditions can change, altering or shifting the fitness values 

of individuals relative to one another.

The first method occurs whenever a positive mutation is gained. For example, 
given a parent population:

F G={22,20, 18,17} ,F g avg=19.25

If g1  mutates such that F m' 1=23 , we have:

F M ' ={23,20, 18,17}, F m' avg=19.50

An average increase in the fitness of the population.

The second method occurs when a parent has two neutral children:

F G ={22,20, 18,17} ,F gavg =19.25

F M ={22,22, 20,18, 17}, ne=4



F M ' ={22,22,20, 18}, F m' avg=21.25

An average increase in the fitness of the population.

The third method occurs when the population size changes:

F G ={22, 20,18, 17}, F  gavg=19.25

F M ={22, 20,18,17} , ne=2

F M ' ={22, 20}, F m ' avg=21.00

An average increase in the fitness of the population.

A combination of these three methods is also possible:

F G ={22,20, 18,17} , F g avg=19.25

F M ={23, 22,20, 18,17}, ne=2

F M ' ={23, 22}, F m ' avg=22.50

An average increase in the fitness of the population.

The fourth method involves changes in the conditions that underly the individual 
fitness values. In general, it would work in the following way:

F G ={22, 20,18, 17}, F gavg=19.25

F M ={22, 20, 18, 17},F mavg=19.25

- Environmental Change -

F M ' ={29, 14,16, 21}, F m ' avg=20.00

An average increase in the fitness of the population.

This change comes about wholly according to the environmental changes. (The 
genome remained the same as it was before, only the fitness levels changed due 
to the increase in the population's ability to survive under the new conditions.)

For novel advancement to occur, (advancement that does not come about only by 
dominance of  latent  genetic  information,)  the  first  of  the  four  methods  must 
occur. In point of fact, the first of the methods must be the overall driving force 
of  evolution if  it  is  to  produce new and more complex structures.  While  the 
second and third methods do increase the average fitness, they do so merely by 
homogenizing the population towards the higher genomes already present in the 
population. They can be used to aid in the preservation of the more fit genomes, 



but they cannot drive the population to higher and more advanced genomes.

The fourth method can potentially increase the average, but this increase could 
only be due to either pure chance (which is unlikely, or at least no more likely 
than the first method could be), or by genetic features that had already been 
developed in previous environments (in which case the real advancement would 
have come earlier from the first method). For actual advancement from lower to 
higher forms, the actual genome must be changed – this fact is unavoidable.



Part 5: Natural Selection

The total final expected fitness of a population of genomes after selection will 
depend on the fitness values of the genomes that make up the population. In 
general, the expected fitness contribution per individual will be that individual's 
fitness  times  its  probability  of  survival.  The  total  final  expected  fitness  of  a 
population of genomes after selection will thus be:

∑ F e M ' =∑ F m xP sm x

∑ F e M ' =
∑ F mx 

2
m

∑ F e M ' =
∑ F m x

2

∑ F M 
ne

F e m' avg=
∑ F m x

2

∑ F M 

F e m' avg=
∑ F M 2

∑ F M 

Given that the standard variance of the population M is:

m
2 = 1
nm

∑
i=1

nm

F mi−F mavg
2

m
2 = 1
nm

∑
i=1

nm

F mi
2F mavgF mavg −2 F mi

m
2 = 1
nm

∑ F M 2F mavg ∑
i=1

nm

F mavg−2 F mi

m
2 = 1
nm

∑ F M 2F mavg F mavgnm−2∑
i=1

nm

F mi

m
2 = 1
nm

∑ F M 2F mavg ∑ F M −2∑ F M 

m
2 = 1
nm

∑ F M 2−F mavg ∑ F M 



m
2 = 1
nm

∑ F M 2−nm F mavg
2

m
2 =∑ F M 2

nm
−F mavg

2

Which gives us:

m
2 F mavg

2=∑ F M 2
nm

∑ F M 2=nmm
2 F mavg 

2

Substituting in our original equation, we get:

F e m' avg=
nmm

2 F mavg
2

∑ F M 

F e m' avg=
nmm

2 F mavg
2

nmF mavg 

F e m' avg=F mavg
m

2

F mavg 

Thus, the expected average fitness after selection depends on the average fitness 
before  selection  and  the  standard  variance  from that  average  (the  standard 
variance before selection).

Selection according to fitness, then, (i.e. our model of Natural Selection,) will 
raise the average expected fitness by  m

2 /F mavg , the standard variance over 
the average fitness of  the group that  the selection is  acting upon. Since the 
standard variance is always positive, we must have:

F e m' avg ≥F mavg

However, selection can be of no advantage where there is no variation in the 
population. If m

2 =0 there will be no expected change in the average fitness of 
the population after selection takes place.



Part 6: Maximum Variance

To determine the maximum theoretical standard variance from an average value 
specified for a value-bounded set, the squares must be maximized. If the range of 
values  is  from  pa  to  pb ,  and  the  average  value  is  m ,  the  maximum 
variance can be calculated fairly simply.

The largest variances possible will be found where the largest possible gaps are. 
These are from pa tom  = m− pa , and from m to pb  = pb−m . The values attained 
from each of these gaps must contribute to an average value of m . To do this, 
we require:

m=
qa paqb pb
qaqb

Where qa  is the quantity of pa and qb  is the quantity of pb .

The standard variance will then be:

max
2 =

qam−pa
2qb pb−m

2

qaqb

max
2 =

qam
2pa

2−2m paqb  pb
2m2−2m pb

qaqb

max
2 =

qaqbm
2

qaqb

qa pa

2qb pb
2

qaqb
−2m

qa paqb pb
qaqb

Simplifying the first term in this equation and substituting the previous equation 
into it, we obtain:

max
2 =m2

qa pa
2qb pb

2

qaqb
−2m2

max
2 =

qa pa
2qb pb

2

qaqb
−m2

Again, from the first equation we can directly derive:

qa pa=m qaqb−qb pb

And its counterpart:

qb pb=mqaqb−qa pa



Substituting these into our working equation, we have:

max
2 =

pamqaqb−qb pb pbm qaqb−qa pa
qaqb

−m2

max
2 =

m qaqb papb
qaqb

−
qaqb pa pb

qaqb
−m2

max
2 =m  pa pb−pa pb−m

2

max
2 =m pb−m− pa pb−m

max
2 =m− pa pb−m

Which is simply the product of the two maximum gaps.

The maximum standard variance for the population M, where  F mavg  is the 
average  fitness  of  the  population  and  the  maximum fitness  is  F m max  will 
therefore be:

max
2 =F mavgF mmax−F mavg 

Therefore, the maximum possible average expected value after natural selection 
must always be:

F e m' avg max=F mavg
max

2

F mavg

F e m' avgmax=F mavg
F mavgF mmax−F mavg

F mavg 

F e m' avgmax=F mavgF mmax−F mavg

F e m' avgmax=F mmax

Which should be expected, and therefore verifies the above equations.



Part 7: Expected Fitness Change After Mutation

Given a initial genome sequence in which the following conditions are met:

a) The genome sequence can be split  into  w  elements, each having  k  
possible permutations.

b) The mutation rate r  per element is consistent across the genome.
c) A single mutation can transform any given element into any of the other 

possible element permutations.

If F hx   is the fitness contribution of an individual element, and if F e hrnd  is 
the expected fitness for a random element, (the average combined fitness of all 
of the permutations possible for an element,) we have:

F e grnd=w⋅F e hrnd

That  is,  the  expected fitness  for  a  random genome is  equal  to  the  expected 
fitness for a random element times the number of elements in the genome.

Now, for a given element,  F hx  , the expected fitness for a random element 
can be expressed as follows:

F ehrnd=
1
k
F hx ∑

i=1, i≠x

k 1
k
F h i

F ehrnd=
1
k
F hx  ∑

i=1, i≠ x

k

F hi

Therefore,

∑
i=1, i≠ x

k

F hi=k⋅F e hrnd−F hx 

Now on mutation, for a true mutation to occur, the element must change from 
what it was before into one of the other possible element permutations. Thus, the 
expected fitness after mutation ( F et xmut ) must be:

F et xmut= ∑
i=1, i≠ x

k F hi
k−1

F et xmut=
1

k−1 ∑
i=1, i≠ x

k

F hi

And, from what we discovered above, this means:



F et xmut=
k⋅Fe hrnd−F hx

k−1

The fitness change per element can then be calculated fairly easily:

F et xmut=F hxF e t x mut

F et xmut=F e t xmut−F hx

F et xmut=
k⋅Fe hrnd−F hx 

k−1
−F hx

F et xmut=
k⋅Fe hrnd−F hx −k−1⋅F hx

k−1

F et xmut=
k⋅Fe hrnd−k⋅F hx

k−1

F et xmut=
k

k−1
F e hrnd−F hx 

Given that r  is the mutation rate per element, the expected fitness change per 
element for the next generation will then be:

F et x=r⋅F et xmut

F et x=
r k

k−1
F ehrnd−F hx

Summing over the entire genome, we have:

F emx =∑
i=1

w

 r k
k−1

F e hrnd−F hx

F emx =
r k

k−1∑i=1

w

F e hrnd−F hx 

F emx =
r k

k−1
∑
i=1

w

F e hrnd−∑
i=1

w

F hx 

F emx =
r k

k−1
w⋅F e hrnd−F g x



F emx =
r k

k−1
F e g rnd−F g x

To get the average expected change over the entire population, we simply take 
the sum of the changes in the population, and divide by the population size.

Since our calculations assume a fixed number of children per parent, we can 
calculate the expected average according to the parents' size as follows:

F emavg=
1
ng
∑
i=1

n g r k
k−1

F e g rnd−F g x

F emavg=
r k

ng k−1∑i=1

n g

F e g rnd−F gx 

F emavg=
ng⋅r⋅k
ng k−1

F eg rnd−
r k

ng k−1∑i=1

ng

F g x

F emavg=
r k

k−1
F e g rnd−

ng⋅r⋅k
ngk−1

F g avg

F emavg=
r k

k−1
F e g rnd−F gavg 

The function that results is linear, with a maximum value of:

r k
k−1

F e g rnd  for F gavg =0  

And a minimum value of:

r k
k−1

Fe g rnd−F g max  for F gavg =F g max

A value of zero is attained when F gavg =F e g rnd . 

As long as F gavg   is less than the expected random value, the fitness can be 
expected to increase. After a fitness value above the expected random value is 
obtained, natural selection must be utilized in order to overcome the negative 
trend.




