Part 6: Maximum Variance

To determine the maximum theoretical standard variance from an average value
specified for a value-bounded set, the squares must be maximized. If the range of
values is from p, to p, , and the average value is m , the maximum
variance can be calculated fairly simply.

The largest variances possible will be found where the largest possible gaps are.
These are from p,tom =m—-p, , and from mtop,= p,—m . The values attained

from each of these gaps must contribute to an average value of m . To do this,
we require:
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Where ¢, isthe quantity of p, and ¢, isthe quantity of p, .

The standard variance will then be:
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Simplifying the first term in this equation and substituting the previous equation
into it, we obtain:
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Again, from the first equation we can directly derive:
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And its counterpart:
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Substituting these into our working equation, we have:

2 p.m(q,+q,)=q,p,)+py(m(q,+q,)—q,p.) o

O pax =
(qatqs)

2 _m(qa+qh)(pa+pb) (¢,%a,)(p, p,) m
(9.+45) (g.+g5)

max

O—lnax:m(pa+pb)_papb_m2

2

O-maxz(m_pa)(pb_m)

Which is simply the product of the two maximum gaps.

The maximum standard variance for the population M, where F (mwg) is the
average fitness of the population and the maximum fitness is F(m),, will
therefore be:
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Therefore, the maximum possible average expected value after natural selection
must always be:
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Which should be expected, and therefore verifies the above equations.



