
Part 6: Maximum Variance

To determine the maximum theoretical standard variance from an average value 
specified for a value-bounded set, the squares must be maximized. If the range of 
values  is  from  pa  to  pb ,  and  the  average  value  is  m ,  the  maximum 
variance can be calculated fairly simply.

The largest variances possible will be found where the largest possible gaps are. 
These are from pa tom  = m− pa , and from m to pb  = pb−m . The values attained 
from each of these gaps must contribute to an average value of m . To do this, 
we require:
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Where qa  is the quantity of pa and qb  is the quantity of pb .

The standard variance will then be:
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Simplifying the first term in this equation and substituting the previous equation 
into it, we obtain:
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Again, from the first equation we can directly derive:

qa pa=m qaqb−qb pb

And its counterpart:

qb pb=mqaqb−qa pa



Substituting these into our working equation, we have:
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Which is simply the product of the two maximum gaps.

The maximum standard variance for the population M, where  F mavg  is the 
average  fitness  of  the  population  and  the  maximum fitness  is  F m max  will 
therefore be:
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Therefore, the maximum possible average expected value after natural selection 
must always be:
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Which should be expected, and therefore verifies the above equations.


