Given an initial genome population:

$$G = \{n_g \ge x \ge 1 | g_1, g_2, g_3, \dots, g_x, \dots, g_{n_g-1}, g_{n_g}\}$$

Where g_x is the x^{th} genome in the population G, and n_g is the number of genomes present in the population.

We define:

$$M = \{n_m \ge x \ge 1 | m_1, m_2, \dots, m_x, \dots, m_{n_m-1}, m_{n_m}\}$$

Where m_x is the x^{th} genome in the population of mutated offspring M of parents G, and n_m is the number of offspring produced by G and included in M.

We further define n_e as the number of individuals expected to survive from M and produce further offspring, and $P_s(m_x)$ as the chance of survival of individual m_x undergoing the selective pressure that will reduce the population M from n_m to n_e .

The sum total of all the probabilities for M will thus equal n_e , or:

$$\sum P_s(M) = n_e$$

And the average chance of survival, (or the chance of survival for an individual with an average genome,) will thus be:

$$P_{s}(m_{avg}) = \frac{\sum P_{s}(M)}{n_{m}} = \frac{n_{e}}{n_{m}}$$
$$P_{s}(m_{avg}) = \frac{n_{e}}{n_{m}}$$