Part 7: Expected Fitness Change After Mutation
Given a initial genome sequence in which the following conditions are met:

a) The genome sequence can be split into w elements, each having %
possible permutations.

b) The mutation rate r per element is consistent across the genome.

c) A single mutation can transform any given element into any of the other
possible element permutations.

If F(h,) is the fitness contribution of an individual element, and if F,(%),, is
the expected fitness for a random element, (the average combined fitness of all
of the permutations possible for an element,) we have:

F(g)=wF,(h)
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That is, the expected fitness for a random genome is equal to the expected
fitness for a random element times the number of elements in the genome.

Now, for a given element, F(h,) , the expected fitness for a random element
can be expressed as follows:

Therefore,
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Now on mutation, for a true mutation to occur, the element must change from
what it was before into one of the other possible element permutations. Thus, the
expected fitness after mutation ( F.(,),. ) must be:
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And, from what we discovered above, this means:



The fitness change per element can then be calculated fairly easily:
Fe(tx>mut :F (hY)+A Fe<tx)mut
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Given that r is the mutation rate per element, the expected fitness change per
element for the next generation will then be:
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AF,(m,)= (F (&)= F(g.))

To get the average expected change over the entire population, we simply take
the sum of the changes in the population, and divide by the population size.

Since our calculations assume a fixed number of children per parent, we can
calculate the expected average according to the parents' size as follows:
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The function that results is linear, with a maximum value of:
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F(g), for F(g,,)=0

And a minimum value of:
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A value of zero is attained when F(g,,,)=F.(2),. .

As long as F(g,,) is less than the expected random value, the fitness can be
expected to increase. After a fitness value above the expected random value is
obtained, natural selection must be utilized in order to overcome the negative
trend.



