
Part 7: Expected Fitness Change After Mutation

Given a initial genome sequence in which the following conditions are met:

a) The genome sequence can be split  into  w  elements, each having  k  
possible permutations.

b) The mutation rate r  per element is consistent across the genome.
c) A single mutation can transform any given element into any of the other 

possible element permutations.

If F hx   is the fitness contribution of an individual element, and if F e hrnd  is 
the expected fitness for a random element, (the average combined fitness of all 
of the permutations possible for an element,) we have:

F e grnd=w⋅F e hrnd

That  is,  the  expected fitness  for  a  random genome is  equal  to  the  expected 
fitness for a random element times the number of elements in the genome.

Now, for a given element,  F hx  , the expected fitness for a random element 
can be expressed as follows:
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Now on mutation, for a true mutation to occur, the element must change from 
what it was before into one of the other possible element permutations. Thus, the 
expected fitness after mutation ( F et xmut ) must be:
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And, from what we discovered above, this means:
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The fitness change per element can then be calculated fairly easily:
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Given that r  is the mutation rate per element, the expected fitness change per 
element for the next generation will then be:
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Summing over the entire genome, we have:
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To get the average expected change over the entire population, we simply take 
the sum of the changes in the population, and divide by the population size.

Since our calculations assume a fixed number of children per parent, we can 
calculate the expected average according to the parents' size as follows:
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The function that results is linear, with a maximum value of:
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A value of zero is attained when F gavg =F e g rnd . 

As long as F gavg   is less than the expected random value, the fitness can be 
expected to increase. After a fitness value above the expected random value is 
obtained, natural selection must be utilized in order to overcome the negative 
trend.


